High performance, low dissipation QCL across the mid-IR range

Stéphane Blaser

IQCLSW 2014, Policoro

Outline

- Alpes Lasers overview
- Single mode sources
 - DFB sources below 1W between 4.5-9.3µm
 - High power DFB
- High power FP devices
- Conclusion and next steps

Alpes Lasers

- founded in 1998
- 19 employees (11PhD, 5 eng.)
- >200 Person*Year
- fabless component manufacturer
- 2400+ sold lasers
- 550+ packaged lasers
- several patents on QCL principles

AIN submount (3x6mm)

TC3

Driver kits (starter kits)

TO3-L

TO3-W

LLH

Iower consumption packages being validated (TO5, etc.)

		C7 1.9655 0.8%	D7 1.9145 1.6%	E7 1.8085 2.0%	F7 1.9255 1.6%	G7 1.8765 0.8%		
	B6 1.836 1.2%	C6 1.948 2.0%	D6 1.8645 2.0%	E6 1.8765 2.0%	F6 1.7765 2.0%	G6 1.8695 2.0%	H6 1.933 1.2%	
A5 1.887 0.4%	B5 1.741 2.0%	C5 1.7375 2.0%	D5 1.741 2.0%	E5 1.8835 2.0%	F5 1.734 2.0%	G5 1.746 2.0%	H5 1.887 2.0%	I5 1.7765 0.4%
A4 (LOCK) 00.00000 1.0%	B4 1.8395 2.0%	C4 1.8835 2.0%	D4 (LOCK) 00.00000 2.0%	E4 1.848 1.5%	F4 1.9555 2.0%	G4 1.8765 2.0%	H4 1.873 2.0%	14 1.7375 1.0%
A3 1.831 1.0%	B3 1.789 2.0%	C3 1.873 2.0%	D3 1.88 2.0%	E3 1.7375 1.5%	F3 1.7565 2.0%	G3 1.887 2.0%	H3 1.799 2.0%	3 1.843 1.0%
A2 1.746 0.5%	B2 1.9045 2.0%	C2 1.843 2.0%	D2 1.892 2.0%	E2 1.751 2.0%	F2 1.836 2.0%	G2 1.8395 2.0%	H2 1.7615 2.0%	l2 1.9655 0.5%
	B1 1.8695 1.4%	C1 1.9405 2.0%	D1 1.897 2.0%	E1 1.8185 2.0%	F1 1.88 2.0%	G1 1.8595 2.0%	H1 1.826 1.4%	
		C0 1.8545 1.1%	D0 1.724 1.9%	E0 1.729 2.0%	F0 1.7665 1.9%	G0 1.734 1.1%		

Proprietary gratings design tool

UV technology

DFB grating during fabrication

- gratings written by standard lithography from 4-12 μ m
- many different wavelengths can be fabricated at once
- efficient device mounting
- full 2"-wafer process
- polyvalent production process

Single mode sources

A killer application is still missing... why?

- Laser sources :
 - Low efficiency compared to diode lasers
 - High electrical dissipation ($W_{el} >> 1W$)
 - Nb of lasers per wafers still low (long lasers & small wafers)
 - Fabrication is still expensive
- Photonics :
 - Diff cult to do photonic integration
 - Optical elements expensive
 - Detectors less sensitive and more expensive

- Most of QCLs have 5-15 W of electrical dissipation
- Up to 100 W are needed to control the temperature
- Optical power levels of few mW sufficient for many applications

- Most of QCLs have 5-15 W of electrical dissipation
- Up to 100 W are needed to control the temperature
- Optical power levels of few mW sufficient for many applications

Research goal:

- Low dissipation devices
- Short chips
- Still enough optical power for spectroscopy

Advantages of short devices

- Low dissipation (more easy CW bar testing)
- More devices per wafer

Probability of major defect in the laser wg

Advantages of short devices

- Low dissipation (more easy CW bar testing)
- More devices per wafer
- Probability of defects (λ) follows a Poissonian law
- Failure rate sensibly reduced with shorter lasers

Probability of major defect in the laser wg

• Defect density estimated on the AL-Stock data (preliminary)

of major defect in the laser wg

• Doublefold impact on the number of chips/wafer

Optimizing ref ectivity for short devices

- Starting range 4.5 μ m and 5.5 μ m
- Optimize the grating coupling to obtain both low consumption DFBs and high power DFBs on the same wafer
- 750 $\mu\text{m}\text{-long}$ devices, 3-4 $\mu\text{m}\text{-wide}$
- Back-facet HR coating
- Front-facet partial HR coating

750 μm long devices 3 μm wide ridge

Low consumption devices

max consumption < 1.4W between 4.5 μ m and 5.3 μ m

• max consumption < 1.4W between 4.5 μ m and 5.3 μ m

Low-dissipation DFB devices at 4.50µm

ALPES LASERS

- very low threshold current : 29mA
- P_{el} max ~1.2W
- single-mode

ALPES Low-dissipation DFB devices at 4.51µm

- opt power up to 48mW / wallplug up to 4%
- P_{el} max ~1.4W
- single-mode

Low-dissipation DFB devices at $4.90 \mu m$

ALP<u></u>

LASERS

Low-dissipation DFB devices at 5.25µm

ALP<u></u>

LASERS

- electrical dissipation as low as 0.31W
- P_{el} max ~ 0.7W
- gain starving (too low doped layer)
- single-mode

Low consumption devices 2nd atmospheric window

• max consumption < 2.6W between 4.5 μ m and 8.4 μ m

Low-dissipation DFB devices at 7.8µm

- very low threshold current : 66mA
- very low threshold power : 0.55W
- Pmax >70mW / huge dynamical range
- single-mode

PR coatings: S. Riedi (ETHZ)

ALPES

LASERS

Low-dissipation DFB devices at $8.4 \mu m$

- did not lase while uncoated/HR !
- low threshold power : 1.06W
- single-mode
- as for 4.9µm case, design is too little doped

PR coatings: S. Riedi (ETHZ)

ALPES

LASERS

Low consumption devices 2nd atmospheric window

FF coating not yet implemented

Can we package these devices in lowdissipation packages ?

Can we package these devices in lowdissipation packages ?

- longer / uncoated device !
- higher currents but CW operation in TO3-L
- max electrical power : up to 3.6W
- single-mode

- blue : uncoated device in a TO3-L
- all range suitable for TO3 operation !!
- smaller packages for low wavelengths

- ~ 80mW at RT / still > 40mW at 50C
- P_{el} max < 6.4W
- single-mode across the all range

- ~ 200mW at RT / still >140mW at 50C
- P_{el} max < 5.5W
- single-mode across the all range

High-power FP devices

- high power CW operation on TEC
- preliminary results, not yet optimized

facet coatings : uncoated/HR (no partial AR)

- Low-dissipation DFB lasers between 4.5 and 9.3 μm with T $_{_{\rm OD}}$ up to >50C
- High-power DFB using the same fabrication process (>140mW at 50C)
- Range of available lasers to be expanded
- Broadgain optimisation for CW operation
- High-power devices optimisation
- Genetic optimisation of the active region design to increase efficiency
- Cloud simulation capability

Special thanks to:

- Dr. Alfredo Bismuto (R&D, process)
- Dr. Tobias Gresch (process masks)
- Dr. Richard Maulini (high power)
- Dr. Romain Terrazzi (design, simulations)
- Dr. Pierre-Yves Baroni (coatings)
- all Alpes Lasers team

Special thanks to:

- Dr. Alfredo Bismuto (R&D, process)
- Dr. Tobias Gresch (process masks)
- Dr. Richard Maulini (high power)
- Dr. Romain Terrazzi (design, simulations)
- Dr. Pierre-Yves Baroni (coatings)
- Dr. Antoine Muller (CEO)
- all Alpes Lasers team