

Terahertz quantum cascade laser frequency combs

David Patrick Burghoff IQCLSW 2014 September 11, 2014

RESEARCH LABORATORY OF ELECTRONICS Massachusetts Institute of Technology

Motivation

 Frequency combs: Light sources that consist of a large number of evenly-spaced laser lines

- What strategies can we use to make THz QCL combs?
- Are there any strategies that apply to all mid-IR QCL combs as well?

Key issue: dispersion

- III-V materials are particularly dispersive in THz
 - GaAs at 3.5 THz: 87,400 fs²/mm
 - Frequencies separated by 1 THz will slip by λ/4 after only 130 μm!

 Injection locking cannot occur when four-wave mixing is too far off-resonance

THz QCL dispersion

- Gain medium actually makes things worse. Can measure real dispersion using THz-TDS (Karl Unterrainer's talk)
- Single section techniques easier for phase measurements

Negative GVD from gain medium

 Broadband gain media often have a region of negative GVD that can partially compensate dispersion

Negative GVD from gain medium

- Broadband gain media often have a region of negative GVD that can partially compensate dispersion
- But without dispersion compensation, combs based on broadband gain media will have difficulty covering more than a fraction of their gain-bandwidth
- Also, many (most?) QCLs don't spontaneously form frequency combs

Dispersion compensation

- Need to counteract natural dispersion by delaying long wavelengths relative to short ones
- Double-chirped mirrors (DCMs): a scheme for compensating dispersion traditionally used in ultrashort pulse generation
- Basic idea
 - Chirp the frequency of a DFB (chirp #1)
 - Taper the amplitude (chirp #2)

Versatility of DCMs

Any form of distributed feedback can work...

All sorts of dispersion can be compensated

Basic results

- In each dispersion sweep series, one laser produces broad spectrum when DCbiased
- Same device produces strong narrowband RF signal directly from laser at repetition rate (near 6.7 GHz, up to -33 dBm)
 - Very feedback-sensitive

Aside: gain medium

- Splitting of gain spectrum due to gain medium, not coherent instability (Gordon et al., PRA (2008))
 - Gain spectrum splits in a bias-dependent way
 - Large bandwidth (array covers 800 GHz)

Electronic beatnote

 Electronic beating from laser bias wire is easily stabilized with sub-kHz feedback from PLL by beating it with RF synthesizer

Same beating is observed on fast optical detectors (HEBs and Schottky mixers).

- To show that these are actually frequency combs, need to consider two types of coherence:
 - Mutual coherence: are the lines evenly spaced?
 - Absolute coherence: are their linewidths "reasonably" narrow?
- In other words...
 - Mutual coherence: Are the beatnotes all phase-stable (with respect to the repetition rate)?
 - Absolute coherence: Is the offset frequency phase-stable (with respect to a stable clock)?

Mutual coherence of two lines

 Imagine constructing a "coherence detector" for a two-line laser (detector plus downconverter)

Mathematical definition of coherence

• Why does $E_1^*(t)E_2(t)e^{i(\omega_{21}-\omega_0)t}$ capture the essence of mutual coherence? Consider the magnitude of its time average:

Define two-line coherence as:
 Gene

$$g_{21} \equiv \frac{\left|\left\langle E_1^*(t)E_2(t)e^{i(\omega_{21}-\omega_0)t}\right\rangle\right|}{\sqrt{\left\langle |E_1(t)|^2 \right\rangle \left\langle |E_2(t)|^2 \right\rangle}} \qquad g_+$$

• Generalization to N lines:

$$g_{+}(\omega) \equiv \frac{|\langle E^{*}(\omega)E(\omega+\omega_{0})\rangle|}{\sqrt{\langle |E(\omega)|^{2}\rangle \langle |E(\omega+\omega_{0})|^{2}\rangle}}$$

Similar definitions in the microcomb literature Torres-Company et al. *Opt. Express* (2014)

Shifted Wave Interference FTS

- How to measure coherence in the case of N lines? Using our coherence detector alone won't work since all the lines would be measured.
- Instead, do coherent detection of the beatnote at the repetition rate through a Michelson interferometer and FT. We call this Shifted Wave Interference FTS = SWIFTS.
 - Modification of ETH beatnote interferometry, which detects intensity of beatnote vs RF frequency instead

Density matrix analogy

	Density matrices	Optical coherence
Matrix elements	$\rho_{nm} = \langle c_n c_m^* \rangle$	$S_{nm} = \langle E_n E_m^* \rangle$
Interpretation of on- diagonal elements	Populations $ ho_{nn} = \left< c_n ^2 \right>$	Optical power $S_{nn} = \left\langle E_n ^2 \right\rangle$
Interpretation of off- diagonal elements	Coherence	Coherence
Cauchy-Schwarz inequality	$ \rho_{nm} \le \sqrt{\rho_{nn}\rho_{mm}}$	$ S_{nm} \le \sqrt{S_{nn}S_{mm}}$ $ \langle E_n E_m^* \rangle \le \sqrt{\langle E_n ^2 \rangle \langle E_m ^2 \rangle}$

SWIFTS as a way to measure coherence

Normal FTS can be used to measure a spectrum product...

$$S_{\pm}^{sp}(\omega) \equiv \sqrt{\left\langle |E(\omega)|^2 \right\rangle} \sqrt{\left\langle |E(\omega \pm \Delta \omega)|^2 \right\rangle}$$

SWIFTS measures the coherence...

$$S_{\pm}(\omega) = \langle E^*(\omega)E(\omega \pm \Delta \omega) \rangle \qquad \qquad g_{\pm}(\omega) \equiv rac{|\langle E^*(\omega)E(\omega \pm \Delta \omega)
angle|}{\sqrt{\langle |E(\omega)|^2
angle \, \langle |E(\omega \pm \Delta \omega)|^2
angle}}$$

 Equality between spectrum product and correlation is only achieved when all of the modes are completely phase-coherent and spaced *exactly* by the repetition rate (within the lock-in BW, ~Hz)

SWIFTS vs Beatnote interferometry

	SWIFTS	Beatnote interferometry
Measurement (τ=delay, ω ₀ =ref. freq.)	$S_{I}(\tau,\omega_{0}) = \left\langle \left(E(t) + E(t-\tau)\right)^{2} \cos(\omega_{0}t) \right\rangle$ $S_{Q}(\tau,\omega_{0}) = \left\langle \left(E(t) + E(t-\tau)\right)^{2} \sin(\omega_{0}t) \right\rangle$	$S_M(\tau,\omega_0) = \sqrt{S_I^2(\tau,\omega_0) + S_Q^2(\tau,\omega_0)}$
Range of ω_0	One frequency at a time (usually repetition rate)	Spectrum analyzer span (usually repetition rate plus some range)
Sensitive to what bandwidth?	Lock-in bandwidth or integration time (Hz-kHz)	Spectrum analyzer resolution bandwidth (Hz to sub-MHz)
Sensitive to incoherent part?	No	Yes
Fourier Transform	$S_{\pm}(\omega,\omega_0) = \mathscr{F}[S_I \pm iS_Q](\omega)$ $\sim \langle \mathbb{E}^*(\omega)\mathbb{E}(\omega+\omega_0) \rangle$	$S_{BI}(\omega,\omega_0) = \mathscr{F}\left[\sqrt{S_I^2 + S_Q^2}\right](\omega)$
How to retrieve optical phase?	Cumulative sum	Phase retrieval (?), followed by cumulative sum

SWIFTS for phase retrieval

- SWIFT spectrum can (almost) be used to completely find E(t) (like FROG or SPIDER)
 - Measures $S_{\pm}(\omega) = \left\langle E^*(\omega)E(\omega \pm \Delta \omega) \right\rangle$
 - Contains phase difference of all adjacent modes
 - Could cumulative sum to get comb phases
- Practically, is noise-sensitive.

SWIFTS for phase retrieval

- SWIFT spectrum can (almost) be used to completely find E(t) (like FROG or SPIDER)
 - Measures $S_{\pm}(\omega) = \left\langle E^*(\omega)E(\omega \pm \Delta \omega) \right\rangle$
 - Contains phase difference of all adjacent modes
 - Could cumulative sum to get comb phases
- Practically, is noise-sensitive.
- Comb is dense, so ΔΦ is approximately the frequencydependent group delay, given by τ_g≈ΔΦ/Δω.

Can we do better?

SWIFTS for time-domain estimation (2)

- Basic idea: maximum likelihood estimation
- Noise profile is known; can subtract possible noise values from measurement to get a distribution of "true" values. Then use them to get a distribution of time-domain parameters that are relatively phase-insensitive, like
 - Intensity, I(t)
 - Carrier frequency, f(t)

Intensity versus time versus bias

Comb region indicated by bounding box

Absolute coherence

- To probe absolute linewidth of comb lines, inject light from a narrowband (DFB) laser into comb cavity and measure intracavity beating between them
- Similar to self-mixing interferometry, only heterodyne
 - Dean et al., *OL* (2011)
 - Talk by J. Keeley on Friday

Absolute coherence results

- To probe absolute linewidth of comb lines, inject light from a narrowband (DFB) laser into comb cavity and measure intracavity beating between them
 - Two beatnotes observed that sum to the repetition rate
 - Measured linewidth is 2.5 MHz, deconvolved linewidth is 1.8 MHz (similar to free-running THz QCLs)

Complete solid state terahertz spectrometer on a chip?

- f-2f not that far off (gain medium basically there)
- Intracavity beating for dual comb measurements

Conclusions

- Demonstrated broadband frequency comb generation in THz QCLs using dispersion compensation
 - 500 GHz total coverage (700 GHz with the hole), 70 lines at 50 K
- Developed SWIFTS, an interferometric technique that can be used to measure mutual coherence of a frequency comb and to elucidate its time-domain profile
- Showed that the absolute linewidth of each comb line is comparable to that of typical THz QCLs
 - Possible to use intracavity mixing to make detector-free system?
- See also:
 - Markus Rösch's talk
 - Martin Wienold's poster

