EHzürich

Quantum cascade lasers frequency combs in the mid-infrared and terahertz

Jerome Faist

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Optical frequency comb

Source with equidistant optical modes

- Incredibly useful!
 - Links the accuracy of an optical transition (10⁻¹⁸) to the one of a microwave signal

LETTER

6 FEBRUARY 2014 | VOL 506 | NATURE | 71

doi:10.1038/nature12941

An optical lattice clock with accuracy and stability at the $10^{-18}\ \mbox{level}$

B. J. Bloom^{1,2*}, T. L. Nicholson^{1,2*}, J. R. Williams^{1,2†}, S. L. Campbell^{1,2}, M. Bishof^{1,2}, X. Zhang^{1,2}, W. Zhang^{1,2}, S. L. Bromley^{1,2} & J. Ye^{1,2}

Both clocks stabilize their lattice laser frequencies to a Cs clock via a self-referenced Yb fibre comb, and their trapping light intensities were stabilized after being delivered to the atoms. The lattice vector shift was

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Frequency combs = evolutionary tree

Frequency combs = evolutionary tree

Frequency combs = evolutionary tree

What is a comb?

Need to lock the modes!

First mode locking

- Christiaan Huygens noticed that two pendulum clocks would synchronized themselves if hanged at the same mantelpiece
- Due to a small mechanical coupling between the pendulum

Christiaan Huygens (1629-1695)

Can be generalized to many pendulum!

Here for 32 metronomes are synchronised

Works also for laser

Injection locked lasers

How do you get to lock different frequencies?

R. Adler, "A study of locking phenomena in oscillators," Proc. IEEE 61(10), 1380–1385 (1973)

Use non-linearities that couple different frequencies

Non-linear polarization

Two – level systems are non-linear!

- Optical gain in an harmonic potential is not possible
 - Active material must be also non-linear!
- Two-level systems have (at least) third order nonlinearities
- The latter will generate sidebands

 $P_{NL}(\omega;\omega_1,\omega_2,\omega_3) = 4\chi_{ijkl}E_jE_kE_le^{i(\omega_1\pm\omega_2\pm\omega_3)t}$

Energy conservation for single frequency fields

 $\omega = \omega_1 \pm \omega_2 \pm \omega_3$

Another non-linearity: saturable absorption

Mode-locking

- Using a saturable absorber to mode-lock
 - Round trip gain for pulse is larger than for c.w. operation

Locking of N modes

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

(c) N=6 modes, all in phase

(d) N=8 modes, all in phase

(e) Gaussian spectrum, all in phase $I(t) = \int_{1}^{1} \int$

Time domain picture

Time domain approach (fast saturable absorber)
Equation:

$$\frac{1}{T_R}\frac{\partial}{\partial T}a = (g-\ell)a + \frac{g}{\Omega_g^2}\frac{\partial^2}{\partial t^2}a + \gamma|a|^2a$$

• Solution
$$a_o(t) = A_o \operatorname{sech}(t/\tau)$$

- Pulse duration: $\tau = \sqrt{\frac{2g}{\gamma A_0^2} \frac{1}{\Omega_g}}$ ~ inverse gain bandwidth
 - For broadband QCL, would be 50-100fs
- Equation similar for Kerr combs

H. Haus, "Mode-locking of lasers," IEEE J Sel Top Quant, vol. 6, no. 6, pp. 1173-1185, 2000.

Saturation also valid for the gain!

In QCL the gain saturates fast

Very short upper state lifetime -> cannot store energy

Simulation of a pulse propagating in a QCL (rate equation)

QCLs can be modulated fast (active ML)

- No resonance, low pass filter transfer function $|h(\omega')|^2 = \frac{1}{1 + \omega'^4 + \omega'^2(\frac{\tau_p}{\tau_{stim}} + 2\frac{\tau_p}{\tau_{up}} + \frac{\tau_p \tau_{stim}}{\tau_{up}^2} - 2)}$ R. Paiella, (2000) S. Barbieri, C. S.
- However very short τ_{stim} at high powers
- R. Paiella, (2000-2002)S. Barbieri, C. Sirtori (2007-)B. Hinkov, IQCSW poster

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Active mode locking in QCLs:

Designs with long upper state lifetime

C. Y. Wang,et al., " *Opt Express*, vol. 17, no. 15, pp. 12929–12943, 2009. THz QCLs

Limitations of active mode-locking:

- The minimum pulse width τ now depends also on the round-trip frequency Ω_m
 - Neglect the gain saturation -> will make things worst

$$\tau = \sqrt[4]{\frac{2g}{M\Omega_m^2\Omega_g^2}}$$

- As a result, one gets 1-2ps pulses for typical values
 - 3mm device, modulation depth M=20%, $\Omega_a = 200 \text{ cm}^{-1}$ FWHM gain

A. Siegman

H. Haus, "Mode-locking of lasers," IEEE J Sel Top Quant, vol. 6, no. 6, pp. 1173–1185, 2000.

IQCLSW 2014

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Another possible picture

- Time domain approach (fast saturable absorber)
 - Equation:

$$\frac{1}{T_R}\frac{\partial}{\partial T}a = (g-\ell)a + \frac{g}{\Omega_g^2}\frac{\partial^2}{\partial t^2}a + \gamma |a|^2a$$

Pulse duration

$$\tau = \sqrt{\frac{2g}{\gamma A_0^2}} \frac{1}{\Omega_g}$$

• Solution $a_a(t) = A_a \operatorname{sech}(t/\tau)$

Frequency domain approach (modal decomposition)

 $\frac{1}{\tau^2} = \frac{\gamma A_a^2 \Omega_g^2}{2a}$

Coupling of discrete modes

Three mode laser

Taken from a classic paper:

TAPLE VELOCIARY

COLORD TORS NOT REPORT

10.0170 1004

Theory of an Optical Maser*

Wrenes 2., Londo Ja 1925 F. Shere G. Ney, Harter, Cossette Ja Resolved D. Jackary 1981

Values and cools for the relation of the prime prime prime to be a set of the detection of the relation of th

• Injection at ω_3 will yield three mode operation (with equidistant frequencies)

IQCLSW 2014 Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Measure directly the four wave mixing product

Rosencher, E. *et al.* Science 271, 168 –173 (1996). Walrod, D. *et al.*, APL, 59 (23), p. 2932, 1991.

- Need to prevent lasing to have a quantitative measurement
 - Use double anti-reflection coated devices

P. Friedli, et al., ," Appl Phys Lett, vol. 102, no. 22, p. 222104, 2013.

P. Friedli, H. Sigg

Experimental setup

Mix a DFB QCL with a source operating by DFG (widely tunable)

P. Friedli, et al., ," *Appl Phys Lett*, vol. 102, no. 22, p. 222104, 2013.

P. Friedli, H. Sigg

Result: four wave mixing product

Quantitative agreement with the model

$$\chi^{(3)} = (0.9 \pm 0.2) \times 10^{-15} \,\mathrm{m^2 V^{-2}}$$

P. Friedli, et al., ," Appl Phys Lett, vol. 102, no. 22, p. 222104, 2013. Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Interpretation

- The beating of ω_1 and ω_2 in the active does modulate the population inversion in time (and space)
- The resulting modulation in (complex) refractive index creates the additional sidebands
- In contrast to normal semiconductor lasers
 - It is fast (<1ps)</p>
 - Therefore broadband!

Broadband multimode lasers

LIV

Is it a comb?

- Does not tell anything about the correlations!!
- The measurement of g⁽¹⁾ does not yield the phases either

Is it a comb?

- Beat note measurement of the photocurrent (at 7.5GHz)
 - For modes of amplitude E_k , the photocurrent at $\Delta \omega$

Fast detector

 Use an intersubband Quantum Well Infrared Photoconductor (QWIP) detector

Detector: H.C. Liu Ref: H. Schneider and H.C. Liu, Springer book

Beatnote spectrum

- The very narrow width confirms the correlations between modes
 - Uncorrelated lines could not be narrower than Schawlow-Townes (100's Hz)
 - However the signal is only about 2% of the c.w. photocurrent

"Time jitter" measurement

Photocurrent is a "classical way" of measuring noise

Combines the relative phases of the modes

Geometrical interpretation

However, the quantitative analysis assumes a mode-locked output with single pulses

Compared to the linewidth of a single line

What about the phases?

Effect of random phases..

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Optical frequency comb

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

| 45

Frequency to amplitude conversion

- Optical discriminator: frequency dependent absorption
 - FM -> AM conversion

Optical discriminator - FM nature mode locking!

Sheet of polyethylene acts as an optical discriminator

A. Hugi, et al., *Nature*, vol. 492, 229–233 (2012)

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Is it a surprise?

- QCLs are "type A" lasers
 - The medium follows the optical field dynamics

 $\kappa << \gamma_{\perp}, \gamma_{21}$

Similar to gas lasers such as HeNe (red alignment laser)

Volume 5, Number 10 APPLIED PHYSICS LETTERS 15 November 1964

FM OSCILLATION OF THE He-Ne LASER¹

S. E. Harrin Consultant to Subaria Flectoonic Systems Mountain Verse, California and Orportosens of Electrical Engineering Stanford University, California

> Russell Targ Flextrons Defense Laboratories Sylvania Electronic Systems Mournain View, Cabliochia (Received 25 September 1964)

(internal phase perturbation: interferometry; KDP (rystal; £)

Modal decomposition approach

Two-level systems (intersubband)

Modal decomposition approach

Two-level systems (intersubband)

Fabry Perot cavity with equidistant modes

Modal decomposition approach

Two-level systems (intersubband)

Motion of $\boldsymbol{\rho}$

$$\frac{d\rho}{dt}=-\frac{i}{\hbar}\left[H,\rho\right]$$

Fabry Perot cavity with equidistant modes

Motion of mode A_n

 $\left(\nabla^2 - \frac{\epsilon_r}{c^2} \frac{\partial^2}{\partial t^2}\right) A_n = \mu_0 \frac{\partial^2}{\partial t^2} P_r$

J. B. Khurgin, et al Appl Phys Lett, vol. 104, no. 8, p. 081118, Feb. 2014.

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Gain

Time dependence of the mode amplitude An

Modal expansion formalism

$$\frac{dA_n}{dt} = (G_n - 1)A_n - iD_nA_n - G_n\sum_{k,l=-N/2}^{N/2} A_mA_kA_l^*B_{kl}C_{kl}\kappa_{klmn}$$

Cavity Dispersion

Four wave mixing driven by population pulsation:

- Spatial hole burning
- Self Gain Saturation
- Cross-gain saturation

FWM terms are resonant!

$$\frac{dA_n}{dt} = (G_n - 1)A_n - iD_nA_n - G_n \sum_{k,l=-N/2}^{N/2} A_mA_kA_l^* B_{kl}C_{kl}\kappa_{klmn}$$

Overlap between modes

$$\kappa_{n,l,k,m} = \frac{1}{l_c} \int_0^{l_c} \sin(k_n z) \sin(k_l z) \sin(k_k z) \sin(k_m z) dz$$

Width of the gain curve (and FWM process)

$$B_{kl} = \frac{\gamma_{12}}{2i} \left(\frac{1}{-i\gamma_{12} - l\omega} - \frac{1}{i\gamma_{12} - k\omega} \right) \qquad \qquad \omega = \frac{2\pi}{t_{rt}}$$

Population population beating

$$C_{kl} = \frac{\gamma_{22}}{\gamma_{22} - i(l-k)\omega}$$

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Simulation results

Simulation results

IQCLSW 2014 Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Self-FM modulation in QCLs

Typical QCL without dispersion

J. B. Khurgin, et al Appl Phys Lett, vol. 104, no. 8, p. 081118, Feb. 2014.

Use a dual comb technique

Mix two combs optically: benchmark one comb with another one

Used also for spectroscopy (see G. Villares' talk)

S. Schiller, "Spectrometry with frequency combs," Opt Lett, vol. 27, no. 9, pp. 766–768, 2002. Keilmann, F., et al. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004)

Setup: mid-IR dual comb spectroscopy

6 mm long

Characteristics

- Compact setup (65cm x 65cm x 25cm)
- No cryogenic cooling needed

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Free running heterodyne beat measurements

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

G. Villares et al., Nat. Comm (in press)

Free running heterodyne beat measurements

Limited by the relative drift of the combs

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

G. Villares et al., Nat. Comm (in press)

Comb equidistance measurement

- Measuring frequency differences removes the CEO fluctuations
 - The equidistance in the RF domain mirrors the one in the optical domain

Stabilization and comb equidistance measurement

P. Del'haye et al, Nature, vol. 450, pp. 1214–1217, 2007

G. Villares et al., Nat. Comm (in press)

Equidistance between peaks

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

G. Villares et al., Nat. Comm (in press)

Results: mHz level accuracy

- The round trip frequency is 7.5GHz
- The individual comb is equidistant to a level of 5x10⁻¹³

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

G. Villares et al., Nat. Comm (in press)

Noise limits of combs

- What is the ultimate linewidth of a comb?
- For c.w. lasers, we have the Schawlow-Townes limit:

$$\Delta \nu = \frac{\pi h \nu \, \Delta {\nu_c}^2}{P} \, \frac{\alpha_m}{\alpha_{tot}} \, \frac{n_3}{n_{3t} - n_{2t}} \left(1 + \alpha_{LEF}^2 \right)$$

- Very narrow, because
 - QCLs are powerful (10-100mW c.w.)
 - Operate at long wavelength (5-10µm)
 - Build with low loss cavities (~6mm cavity)
- However, for QCL this linewidth (~100Hz) is usually much narrower than the one due to technical noise (100kHz)

Use again an optical discriminator

- Measure the frequency noise power spectral density (PSD)
 - Is the amount of frequency noise at each frequency
- Technical noise decreases with f (1/f)ⁿ
- Schawlow-Townes is flat

How broad can we make combs?

- A great feature is the self-referencing
- It needs an octave-spanning comb
 - or at least 2/3 of an octave

An octave-spanning semiconductor laser

Departement of Physics /Institute for Quantum Electronics /Quantum Optoelectronics Group

Outlook

- Shown that QCL can operate as FM combs
- Hard experimental proofs:
 - Beatnote and beatnote spetroscopy
 - Equidistance measurement
 - Quantum noise limit
- A numerical model agrees with the experiment
- Nice to have a theory that could quantify the locking criteria

Eldgenössische Technische Hochschule Zürich Swins Federal Institute of Technology Zurich

> FIR team: G. Scalari, M. Geiser, C. Bonzon, D. Turcinkova, G. Cerullo, M. Roesc

Metamaterial C. Maissen, F. Valmorra, P. Liu

MIR team: B. Hinkov, S. Riedi, J. Wolf, G. Villares, A. Hugi

Growth Team: M. Beck, V. Liverini, K Ohtani