Dalian 2014

Spectroscopy with Laser Frequency Combs

Theodor W. Hänsch

Max-Planck-Institute of Quantum Optics, Garching, Faculty of Physics, Ludwig-Maximilians-University, Munich, Germany

International Quantum Cascade Lasers School & Workshop 2014 Policoro (Matera) Italy, September 7th - 12th, 2014 "laser frequency comb" Google 268 000 entries

controlling radiation from THz to XUV

4 talks

laser frequency comb

A simple tool for measuring optical frequencies of 100's or even 1000's of THz.

A phase coherent link between the optical and the radio-frequency region.

A clockwork mechanism for an optical atomic clock.

T.W.H. Passion for precision (Nobel lecture), Rev. Mod. Phys. 78, 1297 (2006)

single mode

two modes

two modes

three modes

many modes

carrier-envelope phase slips and offset frequency

J.N. Eckstein, Ph.D. Thesis, Stanford University, 1978

Erbium doped fiber laser frequency comb

Space-Comb

Launch: November 2014

Integrated Silicon Nitride Comb Sources

Crystalline toroidal micro-resonators produce frequency combs in the mid-infrared

In this issue NATURE PHOTONICS FOCUS: Mid-infrared photonics

nature

NONLINEAR OPTICS Kerr comb dynamics revealed

JULY 2012 VOL 6 NO 7

FREE-SPACE COMMUNICATIONS Twisted beam boost

THREE-DIMENSIONAL METAMATERIALS Realizing indefinite nanocavities

New prospects for the mid-infrared

A. Schliesser et al, Nature Photonics 6, 440–449 (2012) C.Y. Wang et al, Nature Communications 4, 1345 (2013)

Towards mid-IR frequency combs from quantum cascade lasers

A. Hugi, G. Villares, S. Blaser, H. C. Liu & J. Faist, Nature DOI:10.1038/nature11620

Frequency combs - evolutionary tree

Frequency combs - evolutionary tree

Fourier transform spectroscopy

Fourier Transform Spectroscopy with two frequency combs

no moving parts!

time domain interferometric signal

after Fourier transformation

Resolution: 3 GHz, Measurement time: 42 µs (Single shot)

pairs of comb lines produce radio frequency beat notes

pairs of comb lines produce radio frequency beat notes

pairs of comb lines produce radio frequency beat notes

Fourier Transform Spectroscopy with frequency combs

Fourier Transform Spectroscopy with frequency combs

Fourier Transform Spectroscopy with frequency combs

Cavity-enhanced dual comb spectroscopy

B. Bernhardt et al., Nature Photonics 4, 55 (2010)

asynchronous sampling

repetitive waveform

 $\stackrel{((1)}{\longrightarrow} time$

repetitive waveform asynchronously sampled appears stretched in time

→ time

repetitive waveform asynchronously sampled appears stretched in time

 $\stackrel{((1)}{\longrightarrow} time$

repetitive waveform asynchronously sampled appears stretched in time timing fluctuations appear magnified

time → time

Adaptive real-time dual-comb spectroscopy comb 1 detector signal comb 2 beat signal S₁ beat signal S₂ phase correction $S_1 - S_2$ x 10 digitizer input adaptive clock signal

T. Ideguchi et al., Nature Communications 5, 3375 (2014)

Zooming into spectrum with resolved comb lines

Optical frequency (THz)

Optical frequency (THz)

recording time:	2.7 s
data points:	268 000 000
number of resolved comb lines:	120 000
resolution in the optical domain:	202 kHz

magnification: 2 000 000 x

Dual comb spectroscopy

you need

- Two frequency comb sources
- A single fast photodetector
- A computer

Dual comb spectroscopy

you need

- Two frequency comb sources
- A single fast photodetector
- A computer

you get

- Very short acquisition time
- Extreme sensitivity
- From low to extreme resolution
- Extreme accuracies
- Absorption and dispersion
- Spectral extension from THz to VUV

Nonlinear dual comb spectroscopy

recently demonstrated:

two-photon spectroscopy stimulated Raman spectroscopy coherent Raman spectro-imaging

T. Ideguchi et al. Opt. Lett. 37, 4498-4500 (2012)

- T. Ideguchi et al., Nature 502, 355-355 (2013)
- A. Hipke at al., arXiv:1311.6138 (2013)
- T. Ideguchi et al. arXiv:1403.3814 (2014)

Coherent Raman Spectro-Imaging

T. Ideguchi et al., Nature 502, 355-358 (2013)

Dual-comb coherent anti-Stokes Raman spectroscopy

Frequency combs - evolutionary tree

curiosity driven research

European Research Council

Carl Friedrich von Siemens Stiftung

The End