Terahertz quantum cascade lasers: recent progress and future challenges

Sushil Kumar

Center for Photonics and Nanoelectronics Department of Electrical and Computer Engineering Lehigh University, USA

Outline

- Introduction
- THz Intersubband gain in superlattices
- THz QCL active regions and their performance
- Gain degradation at high temperatures
- Outlook for future

• Intersubband spontaneous emission is extremely inefficient: $\tau_{ul,rad} \sim 10 \ \mu s$ $\tau_{ul,non-rad} \sim 10 \ ps$

- Intersubband spontaneous emission is extremely inefficient: $\tau_{ul,rad} \sim 10 \ \mu s$ $\tau_{ul,non-rad} \sim 10 \ ps$
- Need intersubband amplification for usable optical power:

 $\Delta n_{ul} \equiv n_u - n_l > 0$ (population inversion)

Light amplification in superlattices: Proposed in 1971

- Population inversion occurs in the negative differential resistance (NDR) region.
- Uniform bias cannot be maintained in a superlattice when biased in the NDR region.

Use of resonant-tunneling to populate high energy subbands

Capasso et al., APL (1986) – first demonstration of sequential resonant-tunneling in superlattices

Helm et al., PRL (1989) – first observation of intersubband (THz) light emission in superlattices

First THz QCL

Chirped-superlattice design

E₂₁~18 meV (4.4 THz)

Semi-insulating surface-plasmon waveguide

Köhler et al. Nature (2002)

THz intersubband gain: design considerations

• Population inversion density:
$$\Delta n_{ul} \propto J_{i \to u} \left(1 - \frac{\tau_l}{\tau_{ul}}\right) \frac{\tau_u}{\Gamma_u}$$

• Gain: $g \propto \frac{\Delta n_{ul} \cdot f_{ul}}{\Delta \nu}$

- Design requirements
 - $\tau_{ul} > \tau_l$
 - $J_{i \rightarrow l} \ll J_{i \rightarrow u}$
 - ▶ NDR shoud not occur prior to bias voltage required for $i \rightarrow u$ alignment

THz QCL design considerations: diagonal radiative transition

- Design requirements
 - $\tau_{ul} > \tau_l$
 - $J_{i \rightarrow l} << J_{i \rightarrow u}$
 - ▶ NDR shoud not occur prior to bias voltage required for $i \rightarrow u$ alignment

THz QCL design considerations

• Low-bias, $i \rightarrow l$ alignment

• Design-bias, $i \rightarrow u$ alignment

THz QCL design considerations: thick injector barrier

• Low-bias, $i \rightarrow l$ alignment

• Design-bias, $i \rightarrow u$ alignment

Thicker barrier reduces coupling term Ω

Early THz QCL designs

THz QCLs: temperature performance (2002-2011)

Linear reduction in operating bias range with QCL frequency

Need even thicker injector barrier for low-frequency designs

BTC design: lowest frequency THz QCL (without mag. field)

Walther et al. APL (2007)

Bound-to-continuum THz QCLs: low operating current densities

Resonant-phonon THz QCLs: high-temperature operation

Williams et al. Opt. Exp. (2005)

Hybrid designs: bound-to-continuum transition + phonon depopulation

Amanti *et al.* New J. Phys. (2009) Fischer *et al.* APL (2010)

- More tolerant to growth variations, grown with MOCVD
- Transport not limited by resonant-tunneling
- Grown in InGaAs/InAlAs material system (T_{max}~122 K)

Hybrid designs (contd.)

Kumar et al. CLEO conference (2009)

Three-well resonant-phonon design: Highest T_{max} ~200 K

Luo *et al.* APL (2007) Fathololoumi *et al.* Opt. Exp. (2012)

Resonant-phonon designs: large gain bandwidth

• Coherent 1'-2 resonant-tunneling $(\frac{\Omega_{1'2}}{\pi} > \Delta v_{21})$ causes additional gain broadening

THz QCLs with large gain bandwidths, frequency comb generation

Rösch et al. Arxiv (2014)

Burghoff et al. Nat. Photon. (2014)

THz QCLs: temperature performance (2011-2014)

Scattering-assisted injection, resonant-phonon extraction

Kumar et al. Nature Phys. (2011)

Scattering-assisted injection for low-frequency THz QCLs

Resonant-tunneling injection: requires thick injector barrier

Scattering-assisted injection: works with thin barriers

Scattering-assisted injection for high-frequency THz QCLs?

Challenges:

- Poor injection selectivity
- •High leakage current
- •Large voltage drop per module

Low-frequency THz QCLs with scattering-assisted injection

Low-frequency THz QCLs with scattering-assisted injection

Low-frequency THz QCLs with scattering-assisted injection

High frequency operation in InGaAs/InAlAs material system, grown by MOVPE

Fujita et al. Opt. Exp. (2012)

$$\tau_{u \to l} \propto \exp\left(\frac{\hbar\omega_{\rm LO} - E_{ul}}{k_{\rm B}T_{\rm e}}\right)$$

Diagonality of radiative transition (resonant-phonon design)

Oscillator strength:
$$f_{43} \mu |z_{43}|^2$$
, $z_{43} \equiv \langle 4|\hat{z}|3 \rangle$

Is oscillator strength a good measure of diagonality?

Resonant-phonon designs: diagonality not an independent design parameter

Fathololoumi et al. JAP (2013)

Direct phonon depopulation designs: large τ_{ul}/τ_{l} (>5)

$$\Delta n_{ul} \propto \left(1 - \frac{1}{\tau_{ul}/\tau_l}\right) \tau_u$$

(b) - Carrier leakage due to reabsorption of hot (nonequilibrium) phonons

Vitiello et al. APL (2012)

 $\tau_{u \to e} \propto \bar{n_{\rm LO}}$

 $(n_{\rm LO}^{\rm eq} \sim 0.14 ~{\rm at}~T=200~{\rm K})$

Role of interface-roughness scattering: THz QCLs with shallow barriers

Khanal et al. ITQW Conf. (2013)	

Interface roughness scattering is not dominant at high-temperatures

THz QCLs in different material systems

Material gain in intersubband transitions

$$G = gJ = \frac{4\pi e^2}{\varepsilon_0 n c} \frac{1}{2\gamma_{if} L_p} \frac{E_{if} |\mu_{if}|^2 \tau_{if} J$$

For a fixed energy and current we obtain:

 μ_{if}^2

Lifetime of the upper state Inverse of the probability for an electron to leave the upper state

$$G \propto /\mu_{if}/^{2} \tau_{i} \propto \frac{1}{m^{*} (m^{*})^{1/2}} = \frac{1}{(m^{*})^{3/2}}$$

(C. Sirtori, 2006)

THz QCLs in different material systems

Towards intersubband lasing in lower dimensions

Phonon bottleneck

(C. Sirtori, 2006)

THz QCL operation in high magnetic field

Wade *et al.* Nat. Photon. (2008)

Towards intersubband lasing in lower dimensions: nanopillars

Micropillar array THz QCLs

Krall et al. Opt. Exp. (2014)

Future: A QCL based THz microscope similar to...

- Designed specifically for mid-infrared spectral imaging analysis of biomedical and materials research samples
- · High-brightness tunable laser source
- · Spectral coverage across the entire mid-infrared "fingerprint region"
- Rapid acquisition of full spectrum hyperspectral datacubes
- 2 infrared objectives and 1 visible objective
- Transmission and reflection modes
- · Large format uncooled focal plane array
- Real-time discrete frequency IR imaging at video frame rates
- Fully automated stage
- Instrument control and data display via Ethernet to PC
- · Small instrument footprint

High-resolution, wide-field IR image illuminated at 1555 cm⁻¹ demonstrating diffraction-limited resolution below 5 µm and a pixel resolution of 1.4 µm.

Future: THz QCL arrays, similar to...

The Matchbox 100: A MIR QCL array from EOS photonics (32 DFB lasers, 100 cm⁻¹ discrete tunability)

End of presentation